Indian Statistical Institute, Bangalore

M. Math. Second Year

First Semester - Advanced Probability

Backpaper Exam Max Marks:45 Date : Jan 07, 2014 Time:3 hours

 $\left[5\right]$

[5]

- 1. Let X be a r.v on (Ω, \mathcal{F}, P) and let $\mathcal{G} \subset \mathcal{F}$ be as sub σ -field. Let $X \in L^1(P)$.
 - (a) If $X \ge 0$, show that $E[X \mid \mathcal{G}] \ge 0$ almost surely.
 - (b) If Y is a bounded \mathcal{G} measurable random variable, then show that $E(YX \mid \mathcal{G}) = YE(X \mid \mathcal{G})$ a.s.
 - (c) Let $X = (X_1, ..., X_n) \in \{0, 1\}^n$ and $Y \in [0, 1]$ have the joint distribution

$$P\{X = x, Y \in B\} = \int_{B} y^{k} (1-y)^{n-k} dy$$

where $x = (x_1, ..., x_n) \in \{0, 1\}^n$ and $k = \#\{i : x_i = 1\}$. Construct explicitly a regular conditional distribution of X given $Y = y \in [0, 1]$. [5]

- 2. (a) Let $\{X_t, t \ge 0\}$ be a Poisson process with parameter $\lambda > 0$. Show that $\{X_t \lambda t, t \ge 0\}$ is a martingale with respect to the natural filtration of (X_t) . [5]
 - (b) Let $\{X_t, \mathcal{F}_t, t \ge 0\}$ be a sub-martingale and $\varphi : \mathbb{R} \to \mathbb{R}$ be non decreasing and convex. Show that $\{\varphi(X_t), \mathcal{F}_t\}$ is a sub-martingale. [5]
- 3. (a) Prove Slutsky's result: Let (S, d) be a metric space. Let X_n, Y_n and X take values in S. Suppose $X_n \to X$ in distribution and $d(X_n, Y_n) \to 0$ in probability. Then $Y_n \to X$ in distribution. [5]
 - (b) Define probability measures $\mu_n, n \ge 1$ on [0, 1] as follows:

$$\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\frac{i}{n}}$$

Then show that $\{\mu_n\}$ converges weakly to the Lebesgue measure on [0, 1]. [5]

- 4. (a) Let X be an exponential random variable with parameter $\theta > 0$. Show that X is characterized by its moments i.e., if $EX^n = EY^n$ for all $n \ge 1$, where $Y \ge 0$ then $X \stackrel{d}{=} Y$. [5]
 - (b) Let X have a finite second moment and let $\varphi(t)$ be the characteristic function of X. Show that $\varphi(t)$ is twice differentiable at the origin and $-\varphi''(0) = EX^2$ [5]
- 5. (a) Let $\{X_n, n \ge 1\}$ be a sequence of integrable random variables. Show that if the strong law holds for (X_n) then the weak law also holds. [5]
 - (b) Let $f : [0,1] \to \mathbb{R}$ be a continuous function. Let $\{X_n, n \ge 1\}$ be i.i.d, $X_1 \sim \text{Ber}(p)$ and let $S_n = X_1 + \ldots + X_n$. Show that $Ef(\frac{S_n}{n})$ is a polynomial in $p, 0 \le p \le 1$. [5]
 - (c) Use (b) to prove Weierstrass's result viz., there exists a sequence of polynomials converging to f uniformly in [0, 1]. [5]
- 6. Let $0 and let <math>\mu_p$ be the probability measure on $\{0, 1\}$ with $\mu_p\{1\} = p = 1 \mu_p\{0\}$. Use the Kolmogorov consistency theorem to construct the infinite product measure $\bigotimes_{n=1}^{\infty} \mu_p$ on $\{0, 1\}^N$. [10]